
Alan Hopwood, 4 January 2024

u3a Computing Group

Agenda

Welcome

Current News, Issues and Questions

Future Topics & Next Meeting

Topic: Computer Languages

AOB and Follow up

Current News, Issues and Questions

Anything to discuss?

Future Topics
Topic Votes

Laptop vs Tablet / smartphone 4

Microchip design 2

Being safe on the internet 2

History of computer development 2

Bluetooth 1

Digital communications / information encoding 1

Chromebook 1

Mac vs Windows vs Linux 1

Presentation
Computer languages
A very shallow dip into a very deep
subject.

(Original question: Which language
should I learn - functionality vs ease of
use?)

The Purpose of a Computing Language

• The Challenge is to have a computer perform a specific task:

• How do you give instructions to a computer - that it can
understand?

I have
all these numbers

and I want to know the
their average.

Please?

?

What does a Computer understand?

Computers have a CPU at their centre. We will use the intel
8080-8085 family to consider how they take instructions.

• The Intel 8080 (8085) is one of the simplest microprocessors still in
use.

• 8-bit microprocessor (1974)

• One of the original microprocessors launching personal computing

(also Zilog Z80, Motorola 6800, MOS Technology 6502)

• Although more recent CPUs are more complex, the RISC

architectures (e.g. ARM) have a similar number of instructions.

The 8080/85 Microprocessors

Logic Diagram Instructions
(Machine Code)

The arithmetic logic unit (ALU) performs arithmetic and logic operations.

8085 has 246 instructions

Each instruction is an 8-bit
binary value

8080 programming in Assembler

Memory
Address

Machine
Code

Assembler
Opcode - Operand

8085 Instruction Set in Assembler

Types of Instructions
• Data Transfer: Copy data between registers and memory

• Arithmetic Instructions: Add, Subtract, Increment, Decrement

• Logical Instructions: AND, OR, XOR, Rotate, Compare, Complement

• Branching Instructions: Change program sequence location

• Control Instructions: Halt, enable/disable interrupt, read interrupt

Assembler is:
•Human readable

notation for binary
instructions
understood by the CPU

•Translated to machine
code by an assembler

Need for Programming Language

All programmes can be created in assembler

But

• Extremely complex

• Extremely time consuming

• Extremely error prone

• Need a “higher level” programming language

• Provide programmers with a more functional, more easily

understood instruction set to define a program

• Have a compiler or interpreter program able to translate higher

level program into assembler to run.

Computing Abstraction Model

• Applications written in
programming
language

• Compiled or
interpreted into
assembler

• Assembled into
machine code

• Run by the CPU+

Each layer communicates with adjacent layers

History of Computing Languages

• 1940s: Machine Code

• 1950s: Assembly Language

• 1960s:

• Fortran

• Cobol

• Basic

• 1970s:

• C

• 1980s:

• Object Oriented languages - C++

• Scripting, Web, component based 

Java, Perl, Python, Visual Basic, Java Script

Most used Languages

There are over 1,000 computing
languages. Some of the most used are:

1. JavaScript

2. HTML/CSS

3. Python

7. Java

8 - 10. C and variants

13. Go

20. Swift

Computer Language Concepts - 1

Variable declaration
• Variables are containers for storing values.
• Variable declarations defines whether the variable is accessible throughout

the program, or only within a specific Class or Method.
Control structures
• The Control structure specifies the flow of the program.
• For example: sequential, skip on condition, repeat until.
Data structures
• The way of storing data, e.g.

• Arrays
• Stacks: Last in, first out
• Queues: first in, first out
• Linked lists: use of pointers to memory locations

Computer Language Concepts - 2

Object-orientation
• Use of Objects and Classes
• An Object is a self contained combination of variables, functions,

and data structures with specified input and output communication
• A class provides a predefined design base for an Object
• Encapsulation: Isolates variables, properties and methods with

one “unit”
• Abstraction: Hiding details within an Object and only showing

anything necessary for input & output.
• Inheritance: Creating a Class by linking to a “parent” Class and

adding detail.
• Polymorphism: Making use of different Objects that have the same

interface to achieve different results.

Computer Language Concepts - 3

Programming tools - Integrated Development Environments
(IDEs)
• Applications allowing programmers to write, compile and execute

code.
• They can:

• Provide access to code dictionary/definitions
• Identify syntax errors and auto-completion of code.
• Provide GUI development tools.
• Provide access to libraries and plug-ins.
• Allow testing in a safe environment, including stepping through

the program.

The traditional languages

• Fortran, 1957 (Formula Translating System)

• Developed by IBM in the 1950s for scientific and engineering

applications.

• Used (arguably) the first optimising Compiler.

• has been in use for over seven decades in computationally

intensive areas such as numerical weather prediction, finite
element analysis, computational fluid dynamics, geophysics,
computational physics, crystallography

• Cobol, 1959 (common business-oriented language)

• English-like programming language designed for business use

• designed to be self-documenting and highly readable.

The traditional languages

• Basic, 1963 (Beginners' All-purpose Symbolic Instruction Code)

• Designed for ease of use to enable students in non-scientific

fields to use computers.

• Became the de facto programming language for home

computer systems.

• Hobbyist computers almost always had a BASIC interpreter

installed by default.

• C, 1972 (successor to B)

• Developed at Bell Labs by Ritchie alongside the Unix project.

• The Unix operating system was originally implemented in

assembly language.

• Richie wanted a programming language for developing utilities

for the new platform

Deciding Which Language to Use

Considerations

• Target System

• Smartphone, tablet - IOS, Android

• Computer - Windows, Apple OSX, Unix

• Internet / Website

• DYI computing - Raspberry Pi, Arduino, BBC MicroBit

• Cross Platform capability

• What sort of programme

• Computer Game

• Artificial Intelligence

• Data analysis

• Mathematical algorithms

• Ease of Coding

• Development environment

• Utilities and libraries

• GUI development support

Target System

• Smartphone IOS	 Swift

• Smartphone Android	 Java

• Computer Windows	 Various

• Computer OSX	 Swift

• Unix	 C/C++

• Internet/Website	 JavaScript

• Raspberry Pi	 Python

• BBC Microbit	 Python

• Arduino:	 C/C++

The Top 6 - #6 C (++ or #)
For Unix, Games

• Use If you are a masochist & want to know what most systems
are programmed in

• Can be used with all operating systems

• It is a procedural programming language that forms a good

foundation for software development, kernel development, and
operating system.

• Occupies a substantial portion of the tech world.

• C++ was developed as an extension to the C language. It has

evolved into a multi-model, general-purpose programming
language. It is mostly used in Microsoft products and desktop
applications. Over the last decade, C++ has grown into one of
the most well-known and widely used programming languages.

The Top 6 - #5 Java
Use for Android and most other target platforms 
https://www.java.com/en/

• Java, another high-level programming language that was
developed in the 1990s, is the most popular among modern
programmers.

• initially developed for cable boxes and hand-held devices.
However, it has

• upgraded so much that today, it is almost everywhere, from the
World Wide Web to smartphones to computers.

• Supported on any platform that runs the Java Virtual Machine.

• Java is Open Source, but supported by Oracle

• Extensive documentation and resources available

The Top 6 - #4 Go
Use for network environment https://go.dev

• Go is a procedural and open-source programming language built
for the making of simple, reliable software systems.

• Go was designed at Google in 2007 to improve programming
productivity in an era of multicore, networked machines and large
codebases. Is open source

• The Go language works best for:

• Cloud-native development

• Distributed network services

• Utilities and stand-alone tools

• Go is meant to be simple to learn, straightforward to work with,
and easy to read by other developers. Go does not have a large
feature set, especially when compared to languages like C++. Go
is reminiscent of C in its syntax, making it relatively easy for
longtime C developers to learn.

https://go.dev

The Top 6 - #3 JavaScript
Use for Web development https://www.javascript.com

• JavaScript is a programming language that is exclusively
designed for creating network-centric applications.

• It is an interpreted and lightweight programming language used
for scripting the webpages.

• Almost all the websites on the internet today are built on
JavaScript.

• Your web browser will run JavaScript programs.

• The major JavaScript releases have added a lot of modern

features, and the JavaScript today has vast differences
compared to the Javascript of the previous decade.

https://www.javascript.com

The Top 6 - #2 Swift
Apple Ecosystem: https://developer.apple.com/swift/

• A general-purpose, compiled programming language that also
offers high developer productivity.

• Swift was developed mainly to replace Objective-C in the Mac
and iOS platforms.

• Simple, precise, and clean syntax as well as developer
ergonomic features, it offers a more productive alternative to
Objective-C in the Apple Ecosystem.

• Apple provide excellent development tools and learning
environment.

“The powerful programming language that’s also easy to learn”

The Top 6 - #1 Python
 All round best - https://www.python.org/
• Python is now one of the most popular programming languages.

• As a general-purpose programming language, Python is designed

to be used in many ways. You can build web sites or industrial
robots or a game for your friends to play, and much more, all using
the same core technology.

• Python Packaging offers huge flexibility to develop programs for
different systems.

• It has excellent code readability, vast libraries, and framework.
Some of the noteworthy features of Python are:

• Open-source programming language

• Extensive support modules and community development

• Easy integration with web services

• User-friendly data structures

• GUI-based desktop applications

• Supported by excellent guides and resources.

C
o
m
p
a
r
i
s
o
n

Thank You

