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Easier 

 

Minimum fuel rate 

The fuel produces 12.5 MJ/kg and this is going to appear in the exhaust gases. If we 
burn 1kg of fuel we will liberate 12.5MJ of energy. Using the formula for kinetic 
energy, 𝐸 =

ଵ

ଶ
𝑚𝑣௚௔௦

ଶ , we find, for 1kg of fuel: 

12.5 ×  10଺ =
1

2
× 1 × 𝑣௚௔௦

ଶ  

which tells us 𝑣௚௔௦ = 5,000 ms-1. Assuming the gases end up travelling in a straight 
line behind the rocket the momentum in this 1kg of gas will be 5,000 kgms-1. 

If we are burning fuel at a rate of μ kgs-1 the force, 𝐹, (i.e. the change in momentum 
per second of the fuel) is: 

The Maths and Physics group has decided to visit 
Mars. Initial estimates put the total payload at 40 
tonnes.

Assuming we use liquid hydrogen and oxygen fuel,
estimate the minimum rate in kg/s at which we have 
to burn the fuel just to get the payload off the ground.

From the acceleration due to gravity, g, and the radius 
of the Earth, RE, find the escape velocity we will need 
to achieve.

g = 10 ms-2 ; RE = 6.4 Mm; 2H2+O2 releases 12.5 MJ/kg



 

  

𝐹 = 𝜇𝑣௚௔௦ 

or 𝐹 = 5000𝜇 kgms-2. 

The minimum rate of fuel needed to get the payload off the ground is that which 
just counteracts the force of gravity on the payload. (You might want to add in the 
weight of the fuel, but if the objective is “just to get the payload off the ground” we 
can do that for a negligible amount of time and hence need a negligible amount of 
fuel.) The minimal conditional gives us 

𝜇 × 5000 = 𝑔 × 40 𝑡𝑜𝑛𝑛𝑒𝑠 = 𝑔 × 40,000 𝑘𝑔 

and this leads to 

 μ = 80 kgs-1 

Of course in order to get into space we will need a lot more than this, probably more 
than an order of magnitude more, as most space rockets are mostly fuel when they 
are on the ground. 

Escape velocity 

The force of gravity obeys an inverse square law, and at the surface of the Earth this 
produces an acceleration equal to 𝑔, so 

𝑀ா𝐺

𝑅ா
ଶ = 𝑔 

The potential energy of a mass 𝑚 at a distance 𝑟 from the centre of the Earth is 

𝑚𝑀ா𝐺

𝑟
=

𝑚𝑔𝑅ா
ଶ

𝑟
 

To reach escape velocity our mass will have to be given just enough kinetic energy 
to overcome this potential energy, so, as we are starting from the surface of the 
Earth, i.e. 𝑟 = 𝑅ா , we must have 

1

2
𝑚𝑉ଶ =

𝑚𝑔𝑅ா
ଶ

𝑅ா

= 𝑚𝑔𝑅ா  

i.e. the escape velocity is 

𝑉 = ට2𝑔𝑅ா  

Plugging in the numbers gives 𝑉 approximately equal to 11.3 kms-1. 
  



 

  

Harder 

 

Minimum mass of fuel 

To find the minimum mass of fuel we will have to solve, at least partially, the 
equation of motion. 

We know from the easier problem that the force from the engine is 

𝐹 = 𝜇𝑣௚௔௦ 

And we also know that this has to overcome the weight of the rocket and provide 
the upward acceleration, i.e. 

𝐹 = 𝜇𝑣௚௔௦ = ൫𝑀 + 𝑚(𝑡)൯ ൭
𝑔𝑅ா

ଶ

൫𝑅ா + ℎ(𝑡)൯
ଶ + 𝑎(𝑡)൱ 

Where 𝑀 is the mass of the payload, 𝑚(𝑡) is the mass of the fuel, ℎ(𝑡) is the height 
of the rocket and 𝑎(𝑡) its acceleration. 

The rate at which fuel is used, 𝜇, is the rate of decrease of the mass of fuel, so 

𝜇 = −𝑚̇(𝑡) 

and the acceleration is the second derivative of the height, giving us: 

−𝑚̇(𝑡)𝑣௚௔௦ = ൫𝑀 + 𝑚(𝑡)൯ ൭
𝑔𝑅ா

ଶ

൫𝑅ா + ℎ(𝑡)൯
ଶ + ℎ̈(𝑡)൱ 

Calculate the minimum mass of fuel we’ll need, and 
update the minimum fuel rate.

Make some more realistic assumptions concerning 
your design and update your calculations.

Compare your rocket with Saturn V which could take 
40 tonnes to the Moon. [Saturn V had a dry weight 
(including payload) of ~225 tonnes and used ~2,700 
tonnes of fuel.]



 

  

As the mass of the payload doesn’t change, we can write this as 

−
൫𝑀 + 𝑚(𝑡)൯̇

൫𝑀 + 𝑚(𝑡)൯
𝑣௚௔௦ =

𝑔𝑅ா
ଶ

൫𝑅ா + ℎ(𝑡)൯
ଶ + ℎ̈(𝑡) 

And as the velocity of the exhaust gas doesn’t change with time either we can 
integrate this to find the vertical velocity, ℎ̇(𝑡), 

𝑙𝑜𝑔 ቆ
𝑀 + 𝑚(0)

𝑀 + 𝑚(𝑡)
ቇ 𝑣௚௔௦ = න

𝑔𝑅ா
ଶ

ቀ𝑅ா + ℎ(𝑡)ቁ
ଶ 𝑑𝑡

௧

଴

+ ℎ̇(𝑡) 

The first term on the right can be made small by accelerating quickly, so to estimate 
the minimum mass of fuel we could ignore that term. The aim is to get into space, 
so by the time we run out of fuel (i.e. 𝑚(𝑡) = 0) we need the vertical velocity to be 
the escape velocity (ℎ̇(𝑡) = 𝑉) 

𝑙𝑜𝑔 ቆ1 +
𝑚(0)

𝑀
ቇ >

𝑉

𝑣௚௔௦
 

With 𝑉 = 11.3 kms-1 and 𝑣௚௔௦ = 5 kms-1 we have a minimum fuel mass of 

𝑚(0) = 8.6 × 𝑀 

The minimum fuel rate would then be ~690kgs-1 - which is a lot of fuel! 

More realistic assumptions 

The first problem is that, in our calculation, the rocket only consists of a payload 
and fuel, when in fact the fuel tanks, engines and control equipment will themselves 
weigh a considerable amount. If we assume the control is of a similar mass to the 
payload and the tanks and engines are a fraction, say between 5 and 10%, the mass 
of the fuel we get: 

For 5%: 𝑚(0) = 8.6 × (2𝑀 + 𝑚(0)/20); or   𝑚(0) ≈ 30𝑀 ≈ 1,200 tonnes 

For 10%: 𝑚(0) = 8.6 × (2𝑀 + 𝑚(0)/10); or   𝑚(0) ≈ 125𝑀 ≈ 5,000 tonnes 

Comparison with Saturn V 

Saturn V, which was specified to take 40 tonnes to the Moon, used 2,700 tonnes of 
fuel, so the fuel was therefore 67.5𝑀 which is roughly in line with our guess. The 
dry mass excluding the payload was 185 tonnes, and if we subtract off our guess for 
the control (i.e. 𝑀 or 40 tonnes) the tanks and engines would have been 145 tonnes 
or 5.4% of the mass of fuel – which is towards the lower end of our estimate. 

 


